What does dominated mean?
What does dominated mean?
1 : to have or exert mastery, control, or preeminence his desire to dominate a dominating factor in industrial growth. 2 : to occupy a more elevated or superior position.
What is a antonym for the word dominate?
Antonyms. lose dissuade misconception yang yin subordinate. control command subjugate master.
How do you use dominated in a sentence?
Dominated sentence example
- Maybe Alex wanted to be in control because he had been dominated all his life.
- Our right flank was posted on a rather steep incline which dominated the French position.
- A gray brick house dominated the landscape, its ranch style sprawling in a U shape with a garage on one end.
What is an example of dominate?
To dominate is defined as to have or take control, or to get all the attention. An example of dominate is bossing everyone else around. An example of dominate is what happens when a new baby gets fussed over by everyone and gets all of the attention.
What is the synonym of dominated?
Synonyms & Near Synonyms for dominating. dominant, eminent, prominent.
What is the synonym of dominant?
Some common synonyms of dominant are paramount, predominant, and preponderant. While all these words mean “superior to all others in influence or importance,” dominant applies to something that is uppermost because ruling or controlling.
What is the difference between dominant and dominate?
The word dominate is a transitive verb, which is a verb that takes an object. It is derived from the Latin word, dominari, which means to govern or to rule. Dominant is an adjective that describes something that is supreme over others, something that is successful, something that is commanding.
What is the adjective for dominate?
dominate is a verb, dominant is an adjective, domination is a noun:That country tried to dominate its neighbors. She was a dominant force in the music world. The weaker country faced domination by stronger neighbors.
What is dominant perspective?
June 2020) Dominant narrative can be used to describe the lens in which history is told by the perspective of the dominant culture. This term has been described as an “invisible hand” that guides reality and perceived reality.
How do you identify dominated strategies?
In order to identify the dominated strategy, we need to find if a row exists which corresponds to the lowest Firm A payoffs in all columns. The lowest red values all occur in the highlighted row in the payoff matrix shown above. Hence, cutting advertising is the dominated strategy for Firm A.
What is the adverb of dominate?
dominatingly. In a dominating way: commandingly, authoritatively.
What is an example of a dominant?
The definition of dominant is a person who is in a position of power or who is exhibiting powerful or controlling tendencies. An example of dominant is a strong and powerful CEO.
How do you distinguish between dominant and recessive traits?
What the difference between dominant and recessive genes? ANSWER: Dominant is always expressed when present. Recessive is only expressed when no dominant genes are present.
Which spaces are regular in view of the dominated convergence theorem?
The spaces Lp(S) and l p(0 < p < ∞) are regular in view of the dominated convergence theorem. In contrast, L ∞ ( [0,1]) is not regular (because (7) fails), L ∞ is not regular (because (8) fails), and L∞ (ℝ) is not regular (because (7) and (8) both fail). The regular part of l∞ is c 0.
Does the dominated convergence theorem apply to conditional expectations?
The assumption of convergence almost everywhere can be weakened to require only convergence in measure . The dominated convergence theorem applies also to conditional expectations. ^ For the real case, see Evans, Lawrence C; Gariepy, Ronald F (2015).
Is Lebesgue’s dominated convergence theorem integrable?
Lebesgue’s dominated convergence theorem is a special case of the Fatou–Lebesgue theorem. Below, however, is a direct proof that uses Fatou’s lemma as the essential tool. Since f is the pointwise limit of the sequence (fn) of measurable functions that are dominated by g, it is also measurable and dominated by g, hence it is integrable.
How do you prove that a sequence is dominated by G?
Define g(x) = M for all x ∈ S. Then the sequence is dominated by g. Furthermore, g is integrable since it is a constant function on a set of finite measure. Therefore, the result follows from the dominated convergence theorem.